
linTAP : A Tableau Prover for Linear Logic

Heiko Mantel1 Jens Otten2

1
German Research Center for Artificial Intelligence (DFKI)

Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany
mantel@dfki.de

2 Fachgebiet Intellektik, Fachbereich Informatik, Darmstadt University of Technology
Alexanderstr. 10, 64283 Darmstadt, Germany

jeotten@informatik.tu-darmstadt.de

Abstract. linTAP is a tableau prover for the multiplicative and expo-
nential fragment M?LL of Girards linear logic. It proves the validity of a
given formula by constructing an analytic tableau and ensures the linear
validity using prefix unification. We present the tableau calculus used
by linTAP, an algorithm for prefix unification in linear logic, the linTAP
implementation, and some experimental results obtained with linTAP.

1 Introduction

Linear logic [12] can be regarded as a refinement of classical as well as of intuition-
istic logic. It subsumes these logics because both of them can be embedded into
linear logic. Mainly, linear logic has become known as a very expressive logic
of action and change. It has found applications in logic programming [14,20],
planing [19], modeling concurrent computation [11], and other areas. Its expres-
siveness, however results in a high complexity. Validity is undecidable for propo-
sitional linear logic. The multiplicative fragment is already NP-complete [16].
The complexity of the multiplicative exponential fragment (MELL) is still un-
known. Consequently, proof search in linear logic is difficult to automate.

Various calculi have been developed for linear logic. Beginning with the se-
quent calculus and proof nets by Girard [12], several optimizations have been
proposed. More recently, the connection method has been extended to fragments
of linear logic [8,9,15,17]. In this article, we propose a tableau calculus forMELL
and for M?LL which is the theoretical basis for our theorem prover linTAP.

linTAP is implemented in a very compact way but uses sophisticated tech-
niques to reduce the search space and thus follows the idea of lean theorem
proving . It was inspired by the classical tableau prover leanTAP [2,3] and by
the intuitionistic tableau prover ileanTAP [21]. Like in ileanTAP, string unifica-
tion is used to deal with the non-permutabilities specific to linear logic. This
approach has been invented by Wallen in the context of matrix characteriza-
tions for non-classical logics [25]. The prefixes used by linTAP are motivated by a
matrix characterization for MELL [17]. In our implementation of linTAP we use
a leanTAP like technique for path checking and then try to unify the so-called
prefixes of atoms which are closing the branches of the tableau proof like in
ileanTAP. Some additional checks are required because of the resource sensitivity
of linear logic. Some of these checks are tested already during proof construction.

2 Heiko Mantel Jens Otten

After some preliminaries we propose a tableau calculus for MELL in Sec-
tion 3. The application of a calculus rule to a formula de-constructs the formula
and constructs a prefix for the resulting sub-formulas. An algorithm for the uni-
fication of such prefixes is presented in Section 4. A tableau calculus for M?LL,
where ? and ! can only occur, respectively, positively and negatively, some details
about our theorem prover linTAP, and some experimental results are discussed
in Section 5. We conclude with some remarks on related and on future work.

2 Preliminaries

Linear logic [12] treats formulas like resources that disappear after their use
unless they are explicitly marked as reusable. It can be seen as the outcome
of removing the rules for contraction and weakening from the classical sequent
calculus and re-introducing them in a controlled manner. Linear negation ⊥ is
involutive like classical negation. The two traditions for writing the sequent rule
for conjunction result in two different conjunctions ⊗ and & and two different
disjunctions ...

..............

.............................. and ⊕. The constant true splits up into 1 and > and false
into ⊥ and 0. The unary connectives ? and ! mark formulas for a controlled
application of weakening and contraction. Quantifiers ∀ and ∃ are added as usual.

Linear logic can be divided into the multiplicative, additive, and exponential
fragment. While in the multiplicative fragment resources are used exactly once,
resource sharing is enforced in the additive fragment. Exponentials mark for-
mulas as reusable. All fragments exist on their own right and can be combined
freely. The full power of linear logic comes from combining all of them.

In this article we focus on multiplicative exponential linear logic (MELL
and M?LL), the combination of the multiplicative and exponential fragments,
leaving the additive fragment and the quantifiers out of consideration. ⊥, ⊗, ...

..............

.............................. ,
−◦ , 1, ⊥, !, and ? are the connectives of MELL. In M?LL, ? and ! only occur,
respectively, with positive and negative polarity. Linear negation ⊥ expresses
the difference between resources that are to be used up and resources to be
produced. In order to use up F⊥ a resource F must be produced. Having a
resource F1⊗F2 means having F1 as well as F2. F1−◦F2 allows the construction
of F2 from F1. F1

...
..............
.............................. F2 is equivalent to F1

⊥−◦F2 and to F2
⊥−◦F1. Having a

resource 1 has no impact while nothing can be constructed when ⊥ is used up.
A resource !F acts like a machine which produces any number of copies of F .
During the construction of !F only such machines can be used. ? is the dual to !.

We adopt Smullyan’s uniform notation to MELL. A signed formula ϕ = F k

denotes an occurrence of F in ∆ or Γ . Depending on the label F and its polarity
k ∈ {+,−}, a signed formula will receive a type α, β, ν, π, o, τ , ω, or a according
to the tables below. The functions succ1 and succ2 return the major signed
subformulas of a signed formula. Note that during the decomposition of a formula
the polarity switches only for ⊥ and −◦ . We use type symbols as meta-variables
for signed formulas of the respective type, e.g. α stands for a signed formula of
type α and a stands for atomic formulas, i.e. signed predicates.

The validity of a linear logic formula can be proven syntactically by using a
sequent calculus. For multi-sets Γ and ∆ of formulas Γ −→ ∆ is called a sequent .

linTAP : A Tableau Prover for Linear Logic 3

a A− A+

τ ⊥− 1+

ω 1− ⊥+

α (F1⊗F2)
− (F1

...
..............
.............................. F2)

+ (F1−◦F2)
+

succ1(α) F−1 F+
1 F−1

succ2(α) F−2 F+
2 F+

2

β (F1⊗F2)
+ (F1

...
..............
.............................. F2)

− (F1−◦F2)
−

succ1(β) F+
1 F−1 F+

1

succ2(β) F+
2 F−2 F−2

o (F⊥)− (F⊥)+

succ1(o) F+ F−

ν (!F)− ?F+

succ1(ν) F− F+

π (?F)− !F+

succ1(π) F− F+

Table 1. Uniform notation for signed MELL formulas

It can be understood as the specification of a transformation which constructs
∆ from Γ . The formulas in Γ are connected implicitly by ⊗ while the formulas
in ∆ are connected implicitly by ...

..............

.............................. .
A sequent calculusΣ′1 forMELL based on our uniform notation is depicted in

Table 2. Omitting the π-rule yields a calculus for M?LL. In a rule, the sequents
above the line are the premises and the one below is the conclusion. A princi-
pal formula is a formula that occurs in the conclusion but not in any premise.
Formulas that occur in a premise but not in the conclusion are called active. All
other formulas compose the context. Σ′1 is correct and complete wrt. Girard’s
original sequent calculus [12].

−→ A+, A−
axiom

−→ τ
τ

−→ Υ

−→ Υ, ω
ω

−→ Υ, succ1(o)

−→ Υ, o
o

−→ Υ, succ1(α), succ2(α)

−→ Υ, α
α

−→ Υ1, succ1(β) −→ Υ2, succ2(β)

−→ Υ1, Υ2, β
β

−→ Υ, succ1(ν)

−→ Υ, ν
ν

−→ ν, succ1(π)

−→ ν, π
π

−→ Υ

−→ Υ, ν
w

−→ Υ, ν, ν

−→ Υ, ν
c

Table 2. Sequent calculus Σ′1 for MELL in uniform notation

In analytic proof search, one starts with the sequent to be proven and reduces
it by application of rules until the axiom-rule or the τ -rule can be applied.
There are several choice points within this process. As in classical logic, first, a
principal formula must be chosen. Unless the principal formula has type ν, this
choice determines which rule must be applied. Formulas of type ν are generic.
They can be duplicated using the contraction rule c and are removed by the
weakening rule w. When the β-rule is applied the context of the sequent must
be split, i.e. Υ1 and Υ2 must be a partition of the context. Several solutions
have been proposed in order to optimize these choices [1,10,23,6,13]. Additional
difficulties arise from the rules axiom, τ , and π. The rules axiom and τ require
an empty context which expresses that all formulas must be used up in a proof.
The π rule requires that all formulas in the context are of type ν. The careful
handling of the context reflects the resource sensitivity of linear logic.

Example 1. Figure 1 presents a Σ′1-proof of ϕ = (((A...
..............
.............................. ⊥)⊗!A)...

..............

.............................. ?(A⊥))+. We
abbreviate occurrences of subformulas of ϕ by position markers as shown in the
table on the right. Note that any proof of ϕ requires that the contraction rule c
is applied before the β-rule.

4 Heiko Mantel Jens Otten

−→ a1111, a1211
axiom

−→ a1111, o121
o

−→ a1111, ν12
ν

−→ a1111, ω1112, ν12
ω

−→ α111, ν12
α

−→ a1121, a
′
1211

axiom

−→ a1121, o
′
121

o

−→ a1121, ν
′
12

ν

−→ π112, ν
′
12

π

−→ β11, ν12, ν
′
12

β

−→ β11, ν12
c

−→ α1
α

lab(ϕ′) ϕ′

((A
...
...................................... ⊥)⊗!A)

...
...................................... ?(A⊥) α1

(A
...
...................................... ⊥)⊗!A β11
A

...
...................................... ⊥ α111
A a1111
⊥ ω1112
!A π112
A a1121

?(A⊥) ν12, ν
′
12

A⊥ o121, o
′
121

A a1211, a
′
1211

Fig. 1. An example Σ′1-proof.

3 A Tableau Calculus

The tableau calculus presented in this section is motivated by a matrix charac-
terization for MELL [17].
Basic Definitions. We assume disjoint sets ΦM , ΨM , ΦE , and ΨE of charac-
ters. φM , ψM , φE , and ψE are used as meta-variables for characters from the
respective set. Elements of ΦM and ΨM are called multiplicative and elements of
ΦE , and ΨE are called exponential. Characters in ΦM and ΦE are called variable
and characters in ΨM and ΨE are called constant. The intuition is that variable
characters can be substituted while constant characters cannot. A prefix s is a
string over these sets, i.e. s ∈ (ΦM ∪ ΨM ∪ ΦE ∪ ΨE)∗. A multiplicative string
substitution is a mapping σM : ΦM → (ΦM ∪ ΨM)∗. An exponential string sub-
stitution is a mapping σE : ΦE → (ΦM ∪ ΨM ∪ΦE ∪ ΨE)∗. A string substitution
is a mapping σ : (ΦM ∪ΦE) → (ΦM ∪ ΨM ∪ΦE ∪ ΨE)∗ such that the restriction
of σ to ΦM is a multiplicative string substitution and the restriction to ΦE is an
exponential string substitution. We extend σ homomorphically to strings from
(ΦM ∪ ΨM ∪ ΦE ∪ ΨE)∗ where σ is the identity on constant characters.1

A position p is a string from P = {l, r}∗∪{0}. p is a sub-position of a position
p′ if p′ is a proper prefix of p, e.g. lrl is a sub-position of lr. A multiplicity µ is
a function which assigns natural numbers to positions, i.e. µ : P → IN. Using
multiplicities, we determine the number of duplicates of generic formulas in a
tableau. We mark each occurrence of a formula in a tableau proof with a position.
In a tableau for ϕ, ϕ is marked with position 0. If ϕ is marked with p then the
left and right subformula of ϕ are marked with p ◦ l and p ◦ r, respectively. For
a generic formula ϕ the jth instance of the subformula is marked with p ◦ lj .
Definition 2. Let ϕ be a signed formula, s be a prefix, and p be a position. Then
ϕ : s (p) is called a prefixed formula. If ϕ is of type a, τ , ω, or ν then [ϕ] : s (p) is
prefixed formula as well. We refer to the later kind as marked prefixed formulas.

The type of a prefixed formula ϕ : s (p) is the type of ϕ. We use the same
meta-variables for prefixed formulas as for signed formulas. If necessary, we will
point out what kind of formula is denoted by a specific meta-variable.
Definition 3. A connection is a one-element set containing a marked prefixed
formula of type τ or a two-element set containing two marked atomic prefixed
formulas with the same label and opposite signs. A weakening map is a set of
marked prefixed formulas of type ω and of type ν with multiplicity 0.
1 For M?LL the set ΨE is not needed. Thus, ΦM and ΦE need not be distinguished.

linTAP : A Tableau Prover for Linear Logic 5

For example, {[1]+ : s′ (p′)} and {[A]+ : s′′ (p′′), [A]− : s′′′ (p′′′)} are connections;
∅, {[⊥]+ : t′ (q′)}, and {[?F]+ : t′′ (q′′), [1]− : t′′′ (q′′′)} are weakening maps.

Note, that Definition 3 imposes the same restrictions on the elements of a
connection as the Σ′1-rules τ and axiom do for the principal formulas in order to
close a branch. It requires the same properties for the elements of a weakening
map as the Σ′1-rules ω and w do for the principal formulas in order to remove a
formula. This resembles the relation between a proof according to the connection
method and the set of sequent proofs represented by it [17]. It should be helpful to
keep this in mind in order to grasp the intuition behind the following definitions.

Complementarity Conditions and Closed Tableaux. We now define some
complementarity conditions which are crucial for our definition of closed tableaux
in MELL. Each condition is motivated by a property of the sequent calculus
Σ′1 in Table 2 and, if possible, an intuitive explanation based on the resource
sensitivity of linear logic is given. In the following we always assume C to be a
set of connections, W to be a weakening map, and σ to be a string substitution.
– Resources can be used at most once and disappear after their use. In Σ′1 this

is reflected by the lack of a general rule for contraction and by the context
split in the β-rule. C is linear if each prefixed formula occurs in at most one
connection. C and W are linear if C is linear and p is not a sub-position of p′

for any ϕ : s (p) which occurs in a connection from C and any ϕ′ : s′ (p′) ∈ W.
Intuitively, this linearity condition says that a formula cannot contribute to
an axiom in a corresponding sequent proof if it has been weakened and that
it cannot contribute to more than one axiom.

– Resources cannot disappear without a reason. They must be consumed. In
Σ′1 this is reflected by the lack of a general rule for weakening and by the
requirement of an empty context in the rules axiom and τ . C and W are
relevant for a set of prefixed formulas Υ if each ϕ : s (p) ∈ Υ occurs at least
in one connection or a ϕ′ : s′ (p′) ∈ Υ occurs in W where p is a sub-position
of p′. Intuitively, relevance demands for a corresponding sequent proof that
a formula must contribute to an axiom unless it has been weakened.

– In Σ′1, the context only is divided by the application of a β-rule. Let β be
a set of prefixed formulas of type β and let βW = {(β : s (p)) ∈ β | there is
no (ϕ : s′ (p′)) ∈ W such that p is a sub-position of p′}. C and W have the
right cardinality for β if |C| = |βW |+ 1.

– In Σ′1, certain rule applications can be permuted while others cannot. The
non-permutability of rules for linear logic has been investigated e.g. in [10].
The existence of a suitable order of non-permutable rule applications is ex-
pressed by the unifiability of prefixes. C and W are unified by σ if
• for each c ∈ C the prefixes of all elements of c are identical under σ and
• for each ϕ ∈ W there is a c ∈ C such that the prefix of ϕ is an initial

substring of the prefix of the elements of c under σ.

Definition 4. Let ϕ be a prefixed formula.
1. The one-branch tree ϕ is a tableau for ϕ.
2. If T is a tableau for ϕ and T ∗ results from T by the application of a tableau

expansion rule from Table 3 then T ∗ is a tableau for ϕ.

6 Heiko Mantel Jens Otten

α-rules

(F1
...

..............

.............................. F2)
+: s (p)

F+
1 : s ◦ s′ (p ◦ l)
F+

2 : s ◦ s′ (p ◦ r)

(F1⊗F2)
−: s (p)

F−1 : s ◦ s′ (p ◦ l)
F−2 : s ◦ s′ (p ◦ r)

(F1 −◦F2)
+: s p

F−1 : s ◦ s′ (p ◦ l)
F+

2 : s ◦ s′ (p ◦ r)
. .

ν-rules (for µ(F1) > 0)

(!F1)
− : s (p)

(F 1
1)− : s ◦ s′ ◦ φE

p◦l (p ◦ l)
...

...
...

(F
µ(F1)
1)− : s ◦ s′ ◦ φE

p◦lµ(F1) (p ◦ lµ(F1))

(?F1)
+ : s (p)

(F 1
1)+ : s ◦ s′ ◦ φE

p◦l (p ◦ l)
...

...
...

(F
µ(F1)
1)+ : s ◦ s′ ◦ φE

p◦lµ(F1) (p ◦ lµ(F1))
. .

w-rules (for µ(F1) = 0)

(!F1)
− : s (p)

[!F1]
− : s ◦ s′ (p ◦ l)

(?F1)
+ : s (p)

[?F1]
+ : s ◦ s′ (p ◦ l)

. .

ω-rules
1− : s (p)

[1]− : s ◦ s′ (p ◦ l)
⊥+ : s (p)

[⊥]+ : s ◦ s′ (p ◦ l)
. .

a-rules
A− : s (p)

[A]− : s ◦ s′ ◦ φM
p (p ◦ l)

A+ : s (p)

[A]+ : s ◦ s′ ◦ φM
p (p ◦ l)

. .

τ-rules
⊥− : s (p)

[⊥]− : s ◦ s′ ◦ φM
p (p ◦ l)

1+ : s (p)

[1]+ : s ◦ s′ ◦ φM
p (p ◦ l)

. .
s′ = ψM

p if s = s̃ ◦ φ with φ ∈ ΦE ∪ ΦM

s′ = ε if s = s̃ ◦ ψ with ψ ∈ ΨE ∪ ΨM

β-rules
(F1

...
..............
.............................. F2)

− : s (p)

F−1 : s ◦ s′′ (p ◦ l) F−2 : s ◦ s′′ (p ◦ r)
(F1⊗F2)

+ : s (p)

F+
1 : s ◦ s′′ (p ◦ l) F+

2 : s ◦ s′′ (p ◦ r)

(F1 −◦F2)
− : s (p)

F+
1 : s ◦ s′′ (p ◦ l) F−2 : s ◦ s′′ (p ◦ r)

. .

π-rules
(!F1)

+ : s (p)

F+
1 : s ◦ s′′ ◦ ψE

p◦l (p ◦ l)
(?F1)

− : s (p)

F−1 : s ◦ s′′ ◦ ψE
p◦l (p ◦ l)

. .
s′′ = φM

p if s = s̃ ◦ ψ with ψ ∈ ΨE ∪ ΨM

s′′ = ε if s = s̃ ◦ φ with φ ∈ ΦE ∪ ΦM

o-rules
(F1

⊥)+ : s (p)

F−1 : s (p ◦ l)
(F1

⊥)− : s (p)

F+
1 : s (p ◦ l)

Table 3. A prefixed-based tableau calculus for MELL

linTAP : A Tableau Prover for Linear Logic 7

Expansion rules are applied as usual [7]. The application of a rule de-constructs
a formula, possibly enlarges the prefix, and constructs a position. A tableau is
strict if each occurrence of a formula is reduced at most once on a branch. In
a strict tableau, prefixed formulas can be uniquely identified by their positions.
In the sequel, we will consider only strict tableaux and will extensively use the
isomorphism between formulas in a given tableaux and their positions.

Definition 5. A branch of a tableau is closed by a connection c if all elements
of c occur on that branch.

Let T be a tableau for ϕ, ΥT be the set of prefixed formulas of type a, τ , ω, and
ν (with multiplicity 0) which occur in T , and βT be the set of prefixed formulas
of type β in T . Further, let C be a set of connections where the elements of
connections are from ΥT . Let W be a weakening map with elements from ΥT .
Let σ be a string substitution. Then C and W fulfill linearity in T if C and W
are linear. C and W fulfill relevance in T if C and W are relevant for ΥT . C and
W fulfill cardinality in T if C and W have the right cardinality for βT . C, W,
and σ fulfill unifiability for T if C and W are unified by σ.

Definition 6. Let T be a tableau for a prefixed formula ϕ. Further, let C be a
set of connections, W be a weakening map, and σ be a string substitution. T is
closed by C, W, and σ iff the following conditions hold:
– Each branch of T is closed by a connection from C.
– C, W, and σ fulfill linearity, relevance, cardinality, and unifiability for T .

Example 7. A tableau T for ((A...
..............
.............................. ⊥)⊗!A)...

..............

.............................. ?(A⊥) is depicted in Figure 2. The
set of connections C={{0llll, 0rlll}, {0lrll, 0rllll}} closes the branches of the
tableau. Let W = {0llrl} be a weakening map and σ be a substitution with
σ(φE0rl) = φM0l ψ

M
0llφ

M
aux1, σ(φM0lll) = φMaux1ψ

M
0rllφ

M
0rll, σ(φE0rll) = φM0l ψ

E
0lrlφ

M
aux2, and

σ(φM0lrl) = φMaux2ψ
M
0rlllφ

M
0rlll. Then T is closed by C, W, and σ.

The following theorems state that the tableau calculus in Table 3 is correct and
complete. In order to follow the proof sketches prior knowledge of [17] is required.

Theorem 8 (Correctness). If there is a closed tableau for a prefixed formula
ϕ = F+ : ψM0 (0) for some multiplicity µ then F is valid.

Proof Sketch: Let T be a tableau for ϕ with multiplicity µ which is closed by C,
W, and σ. We construct a matrix proof for the matrix M of ϕ. The correctness
of the matrix characterization in [17] then implies that ϕ is valid.

For every prefixed formula ϕ′ in T there is a corresponding node n in M
with the same label, polarity, type, and ancestors which are equivalent under
this relation. Let m be an injective mapping which assigns to a formula in T a
corresponding node in M . All non-special nodes in M are in the image of m. We
define the application of m to sets as the application of m to the elements. For
any path of leaves P through M there is branch B in T with marked formulas
ΥB such that m(ΥB) ⊆ P holds. Let CM = m(C) and WM = m(W). Since all
branches of T are closed by C, CM is spanning for M . CM and WM are linear,

8 Heiko Mantel Jens Otten

11 : [⊥]+ : ψM
0 φM

0l ψ
M
0ll (0llrl)

12 : [A]+ : ψM
0 φM

0l ψ
M
0llφ

M
0lll (0llll)

13 : [A]− : ψM
0 φE

0rlψ
M
0rllφ

M
0rll (0rlll)

ω on (9) a on (8), (10)

10 : A− : ψM
0 φE

0rl (0rll)

o on (4)

8 : A+ : ψM
0 φM

0l ψ
M
0ll (0lll)

9 : ⊥+ : ψM
0 φM

0l ψ
M
0ll (0llr)

α on (6)

6 : (A
...
...................................... ⊥)+ : ψM

0 φM
0l (0ll)

16 : [A]+ : ψM
0 φM

0l ψ
E
0lrlφ

M
0lrl (0lrll)

17 : [A]− : ψM
0 φE

0rllψ
M
0rlllφ

M
0rlll (0rllll)

a on (14), (15)

15 : A− : ψM
0 φE

0rll (0rlll)

o on (5)

14 : A+ : ψM
0 φM

0l ψ
E
0lrl (0lrl)

π on (7)

7 : (!A)+ : ψM
0 φM

0l (0lr)

(((((((((((β on (2)
````````β on (2)

4 : (A⊥)+ : ψM
0 φE

0rl (0rl)

5 : (A⊥)+ : ψM
0 φE

0rll (0rll)

ν on (3)

2 : (A
.........................................................
...................................... ⊥)⊗!A+ : ψM

0 (0l)

3 : ?(A⊥)+ : ψM
0 (0r)

α on (1)

1: ((A
.........................................................
...................................... ⊥)⊗!A)

.........................................................
...................................... ?(A⊥)+ : ψM

0 (0)

Fig. 2. An example tableau

relevant, and have the cardinality property for M . Marked formulas of type a, τ ,
ω, and ν have the same prefix (under renaming) as the correspondent nodes in
M . Therefore, σ is a unifier for CM and WM in M . Thus, M is complementary
for CM , WM , and σ.

Theorem 9 (Completeness). If a formula F is valid then there exists a closed
tableau for the prefixed formula ϕ = F+ : ψM0 (0).
Proof Sketch: From any matrix proof of the matrix M of ϕ a closed tableau
for ϕ can be constructed. The completeness of the matrix characterization then
implies that a tableau for any valid formula exists.

The crucial step is that if there is a complementary matrix M ′ for ϕ with
multiplicity µ′ then there is a multiplicity µ, a set of connections C, a weakening
map W without elements of type φE , and a string substitution σ such that the
matrix M for ϕ with multiplicity µ is complementary for C, W, and σ. Using C,
W, and σ, a closed tableau for ϕ can be constructed.

4 Prefix Unification

The computation of a string substitution σ is one of the key components neces-
sary to perform proof search in the prefix-based tableau calculus introduced in
the previous section. A single string substitution σ has to unify the prefixes of
each connection in the set C. Furthermore the weakening mapW has to fulfill the
unifiability condition under this substitution σ. This condition can be reduced
to unification since a prefix s is an initial substring of a prefix t iff s ◦ V and t
can be unified where V is a new variable.

String unification in general is rather complicated but fortunately unifying
prefixes is much easier since there are two restrictions on prefixes: prefixes are



linTAP : A Tableau Prover for Linear Logic 9

strings without duplicates and in any two prefixes (corresponding to atoms of the
same formula) equal characters can only occur within a common substring at the
beginning of the prefixes. In [22] we introduced a prefix unification algorithm,
so-called T-String Unification, to unify prefixes in matrix based proof methods
for non-classical logics, i.e. intuitionistic logic and the modal logics D, K, D4,
K4, S5, and T. Only minor modifications are necessary to adapt this algorithm
to deal with the prefixes arising in our tableau calculus for MELL: we have to
distinguish between characters (i.e. positions) of type φM/ψM and type φE/ψE .

Similar to the ideas of Martelli and Montanari [18] we consider the process
of unification as a sequence of transformation steps. We start with the given
set of (prefix-) equations Γ = {p1=t1, . . . , pn=tn} and an empty substitution
σ=∅. Each transformation step replaces the tuple (Γ, σ) by a modified tuple
(Γ ′, σ′) where Γ ′ is the result of replacing one equation {pi=ti} in Γ by {p′i=t′i}
and applying the substitution σ′ to the resulting equation set. The algorithm
is described by transformation rules “ {si=ti}, σ → {s′i=t′i}, σ′ ” which can be
applied nondeterministically to the selected equation {si=ti} ε Γ . The set Γ is
solvable, iff there are some transformation steps transforming the tuple (Γ, ∅) into
the tuple (∅, σ̃). In this case the substitution σ̃ represents an idempotent most
general unifier for Γ . The set of all resulting most general unifiers is minimal .
For technical reasons we divide the right part ti of each equation into two parts
t1i |t2i where the left part contains the substring which is not yet assigned to a
variable. Therefore we start with the set of prefixes Γ = {s1=ε|t1, . . . , sn=ε|tn}.

Definition 10. Let V=ΦM∪ΦE be a set of variables, C=ΨM∪ΨE be a set of
constants, ṼM and ṼE be disjoint sets of auxiliary variables, V ′=ṼM∪ṼE (with
V∩V ′=∅), VM=ΦM∪ṼM , and VE=ΦE∪ṼE . The set of transformation rules for
MELL is defined in Table 4.

R1. {ε = ε|ε}, σ → {}, σ
R2. {ε = ε|t+}, σ → {t+ = ε|ε}, σ
R3. {Xs = ε|Xt}, σ → {s = ε|t}, σ
R4. {Cs = ε|V t}, σ → {V t = ε|Cs}, σ
R5. {V s = z|ε}, σ → {s = ε|ε}, {V \z}∪σ
R6. {V s = ε|C1t}, σ → {s = ε|C1t}, {V \ε}∪σ
R7. {V s = z|C1C2t}, σ → {s = ε|C2t}, {V \zC1}∪σ (V εVE or C1 ε Ψ

M )

R8. {V s+ = ε|V1t}, σ → {V1t = V |s+}, σ (V1 εVE or V εVM )

R8′. {V s+ = ε|V1t}, σ → {V1t = V |s+}, {V \Ṽ M}∪σ (V1 εVM and V εVE)

R9. {V s+ = z+|V1t}, σ → {V1t = V ′|s+}, {V \z+V ′}∪σ
(if V1,V εVE then V ′ ε ṼE else V ′ ε ṼM )

R10. {V s = z|Xt}, σ → {V s = zX|t}, σ (V εVE or X ε (VM∪ΨM ))

R10′. {V s = z|Xt}, σ → {V s = zX|t}, {X\Ṽ M}∪σ (V εVM and X εVE)

s,t,z ε (V∪C∪V′)∗ denote (arbitrary) strings, s+,t+,z+ ε (V∪C∪V′)+ denote non-empty strings.

X,V, V1, C, C1 and C2 denote single characters with X εV∪C∪V′, V ,V1 εV∪V′ (with V 6=V1), and

C,C1, C2 ε C. V ′ and ṼM ε ṼM are new variables which do not occur in the substitution σ computed

so far. To apply rule R10 or R10′ the following must hold: V 6=X, and s=ε or t6=ε or X ε C.

Table 4. Transformation rules for MELL



10 Heiko Mantel Jens Otten

These rules are identical with the transformation rules presented in [22].
We only added rules R8′ and R10′ (which are applied instead of rules R8 and
R10 in certain cases) and some additional restrictions for the rules R7 and R9
(characters X εVE∪ΨE cannot be assigned to variables V εVM ). We use the
notation {x\t |σ(x)=t and x 6=t} to specify a substitution σ and omit the string
concatenation operator “◦”. See [22] for a graphical motivation of these rules, a
more detailed description of the algorithm, and some complexity results.

Example 11. Consider the formula ((A.................................................
............
.................................. ⊥)⊗!A).................................................

............
.................................. ?(A⊥) from Example 7 and

the unification of the two prefixes ψM0 φM0l ψ
E
0lrlφ

M
0lrl and ψM0 φE0rllψ

M
0rlllφ

M
0rlll. To

keep the notation simple we substitute each character φp and ψp by V|p| and C|p|,
respectively, i.e. we start the unification process with the tuple {CM0 VM2 CE4 V

M
4 =

ε|CM0 V E4 CM5 VM5 }, {} and apply the transformation rules according to Table 4:

{CM
0 V M

2 CE
4 V

M
4 = ε|CM

0 V E
4 CM

5 V M
5 }, {} R3−→ {V M

2 CE
4 V

M
4 = ε|V E

4 CM
5 V M

5 }, {}
R8−→ {V E

4 CM
5 V M

5 = V M
2 |CE

4 V
M
4 }, {} R10−→ {V E

4 CM
5 V M

5 = V M
2 CE

4 |V M
4 }, {}

R9−→ {V M
4 = V ′|CM

5 V M
5 }, {V E

4 \V M
2 CE

4 V
′} R10−→ {V M

4 = V ′CM
5 |V M

5 }, {V E
4 \V M

2 CE
4 V

′}
R10−→ {V M

4 = V ′CM
5 V M

5 |ε}, {V E
4 \V M

2 CE
4 V

′}
R5−→ {ε = ε|ε}, {V E

4 \V M
2 CE

4 V
′, V M

4 \V ′CM
5 V M

5 }
R1−→ {}, {V E

4 \V M
2 CE

4 V
′, V M

4 \V ′CM
5 V M

5 }
The only successful transformation sequence, leading to a tuple {}, σ̃, yields

the substitution σ̃ = {V E4 \VM2 CE4 V
′, VM4 \V ′CM5 VM5 }. Applying rule R10 in-

stead of rule R8 (which is the only nondeterministical choice) does not lead to
any successful transformation sequence. Thus the only (most general) unifier is
{φE0rll\φM0l ψE0lrlV ′, φM0lrl\V ′ψM0rlllφM0rlll} where V ′ is a new introduced variable.

For the fragmentM?LL of linear logic (on which we will focus in the following
section of this paper) we do not need to deal with characters of type φE or ψE .
Furthermore all prefixes to be unified have the form C1V1C2V2...CnVn (where
Vi εV and Ci ε C), allowing us to drop rules R2, R4, R6, and R7 (see also [15]).

Definition 12. Let V=ΦM be a set of variables, C=ΨM be a set of constants,
and V ′ be a set of auxiliary variables (with V∩V ′=∅). The set of transformation
rules for M?LL is defined in Table 5.

R1. {ε = ε|ε}, σ → {}, σ
R3. {Xs = ε|Xt}, σ → {s = ε|t}, σ
R5. {V s = z|ε}, σ → {s = ε|ε}, {V \z}∪σ
R8. {V s+ = ε|V1t}, σ → {V1t = V |s+}, σ
R9. {V s+ = z+|V1t}, σ → {V1t = V ′|s+}, {V \z+V ′}∪σ
R10. {V s = z|Xt}, σ → {V s = zX|t}, σ (V 6=X, and s=ε or t 6=ε or X ε C)

s,t,z ε (V∪C∪V′)∗ denote (arbitrary) strings, s+,z+ ε (V∪C∪V′)+ denote non-empty strings. X, V ,

and V1 denote single characters with X εV∪C∪V′ and V, V1 εV∪V′ (with V 6=V1). V
′ εV′ is a new

variable which does not occur in the substitution σ computed so far.

Table 5. Transformation rules for M?LL



linTAP : A Tableau Prover for Linear Logic 11

5 A Tableau Prover

In this section we present an implementation of the tableau calculus for the
fragment M?LL. We first present the calculus and repeat some definitions.

A Tableau Calculus for M?LL. The tableau calculus forM?LL is similar to
the calculus forMELL presented in Table 3. Since ? and ! can only occur, respec-
tively, with positive and negative polarity we do not need the π-rule anymore.
Because of that there are no positions of type φE or ψE anymore. Furthermore
the ν-rules use a stepwise contraction and the τ - and ω-rules are modified. Let
AF be the set of all predicate symbols in the formula F . A tableaux for a for-
mula F is defined as usual (see Definition 4) but with the tableau expansion
rules from Table 6 where Ap εA′ is a predicate symbol and Xp εX is a predicate
variable. Let T be a tableau, σ:ΦM→(ΦM ∪ ΨM ) be a string substitution, and
σX :X→(AF ∪ A′) be a predicate substitution.

Definition 13. A branch of T is closed iff it contains a complementary connec-
tion, i.e {[A]− : s (p), [B]+ : t (q)} where σ(s)=σ(t) and σX (A)=σX (B).

Let T be a tableau, C be a set of connections, αT and βT be the set of all
positions of formulas of type α and β, respectively, in T .

Definition 14. A tableau T is closed iff (1.) every branch of T is closed by a
c ε C under σ and σX , (2.) if {a, b} ε C and {a, c} ε C then b=c (linearity), (3.)
2|C| = |αT |+ |βT |+ 1 (relevance), and (4.) 2|C| = 2|βT |+ 2 (cardinality).

Theorem 15 (Correctness & Completeness).A formula F is valid in the
fragment M?LL iff there is a closed tableau for the prefixed formula F+ : ψ0 (0).

Proof (Sketch). We show that our calculi for M?LL and MELL (without using
rule π) are equivalent for the fragment of M?LL: both ν-rules are equivalent
(consider an appropriate multiplicity µ); rules τ and ω are correct and complete,
i.e 1+ ≡⊥−≡ (A−◦A)+ for a new predicate symbol A and ⊥+≡ 1− ≡ (X−◦X)−

for an arbitrary predicate symbol X (so that one-element connections are omited
and the weakening map is empty), since both 1+/⊥− and (A−◦A)+ lead to leafs
in the sequent proof and the rules for ⊥+/1− can always applied at the leafs in
the sequent proof; linearity and cardinality conditions are identical (with empty
weakening map); if C is linear and 2|C|=|αT |+|βT |+1 then every atomic formula
occurs in C (relevance condition), since the number of leaves in the (binary)
formula tree is equal to the number of inner nodes plus one.

The linTAP Implementation. The previous calculus has been implemented in
Prolog (see Table 7). For the syntax of formulas we use the logical connectives
“~” (negation ⊥), “*” (conjunction ⊗), “@” (disjunction .................................................

............
.................................. ), “@>” (implication

−◦), the exponentials “?” and “!”, the constants “1” (for 1) and “0” (for ⊥), and
Prolog atoms for atomic formulas. For example to express the formula ((A.................................................

............
.................................. ⊥

)⊗!A).................................................
............
.................................. ?(A⊥) we use the Prolog term ((a@0)*!a)@ ?(~a).

We use 0 and 1 to present the polarities + and −, respectively. Positions are
constructed from right to left and prefixes are represented by Prolog lists. Like
in ileanTAP we use two predicates for path checking: fml and prove.



12 Heiko Mantel Jens Otten

α-rules

(F1
.................................................

............
.................................. F3)

+ : s (p)

F+
1 : s ◦ s′ (p ◦ l)
F+

3 : s ◦ s′ (p ◦ r)

(F1 ⊗ F3)
− : s (p)

F−1 : s ◦ s′ (p ◦ l)
F−3 : s ◦ s′ (p ◦ r)

(F1−◦F3)
+ : s (p)

F−1 : s ◦ s′ (p ◦ l)
F+

3 : s ◦ s′ (p ◦ r)
s′=

¡
ψp , if s=s̃ ◦ φ, φ εΦM

ε , else

β-rules

(F1
.................................................

............
.................................. F2)

− : s (p)

F−1 : s ◦ s′ (p ◦ l) F−2 : s ◦ s′ (p ◦ r)
(F1 ⊗ F2)

+ : s (p)

F+
1 : s ◦ s′ (p ◦ l) F+

2 : s ◦ s′ (p ◦ r)

(F1−◦F2)
− : s (p)

F+
1 : s ◦ s′ (p ◦ l) F−2 : s ◦ s′ (p ◦ r) s′=

¡
φp , if s=s̃ ◦ ψ, ψ ε ΨM

ε , else

ν-rules

(!F1)
−: s (p)

⊥− : s (p)

(!F1)
−: s (p)

F−1 : s ◦ s′ (p ◦ l)
(!F1)

−: s ◦ s′ (p ◦ r)

(?F1)
+: s (p)

⊥+ : s (p)

(?F1)
+: s (p)

F+
1 : s ◦ s′ (p ◦ l)

(?F1)
+: s ◦ s′ (p ◦ r)

s′=
¡
ψp , if s=s̃ ◦ φ, φ εΦM

ε , else

o-rules
(F1

⊥)+ : s (p)

F−1 : s (p ◦ l)
(F1

⊥)− : s (p)

F+
1 : s (p ◦ l)

τ-rules
⊥− : s (p)

(Ap−◦Ap)+ : s (p ◦ l)
1+ : s (p)

(Ap−◦Ap)+ : s (p ◦ l)

ω-rules
1− : s (p)

(Xp−◦Xp)− : s (p ◦ l)
⊥+ : s (p)

(Xp−◦Xp)− : s (p ◦ l)

a(tom)-rules

A+ : s (p)

[A]+: s◦s′◦φp (p)

A− : s (p)

[A]−: s◦s′◦φp (p)
s′=

¡
ψp , if s=s̃ ◦ φ, φ εΦM

ε , else

Table 6. A prefixed-based tableau calculus for M?LL

fml(F,Pol,P,F1,F2,F3,PrN,Ctr) is used to specify the rules of our prefix-
based tableau calculus. It succeeds if there is a rule to expand the formula F. Pol
is the polarity, P, F1, F2, F3, and PrN are the position p, formulas F1, F2, F3, and
the new prefix character s′, respectively. Ctr is bound to c if a contraction (rule)
is applied. According to our calculus we need 18 clauses to specify all rules.



linTAP : A Tableau Prover for Linear Logic 13

%%% Specification of Tableau Rules

fml(A, Pol, P,[A,Pol],[], [],[P],0):-var(A).
fml((A@B), 0, P, (A,0), [], (B,0),[P],0). fml((A@B), 1, _, (A,1), (B,1),[],[_],0).
fml((A*B), 1, P, (A,1), [], (B,1),[P],0). fml((A*B), 0, _, (A,0), (B,0),[],[_],0).
fml((A@>B),0, P, (A,1), [], (B,0),[P],0). fml((A@>B),1, _, (A,0), (B,1),[],[_],0).
fml((!A), 1, P, (A,1), [],((!A),1),[P],c). fml((!_), 1, _, (1,1), [], [], [],0).
fml((?A), 0, P, (A,0), [],((?A),0),[P],c). fml((?_), 0, _, (0,0), [], [], [],0).
fml(0, 1, P, (P,0), [], (P,1),[P],0). fml(1, 1, _, (X,0), (X,1),[],[_],0).
fml(1, 0, P, (P,0), [], (P,1),[P],0). fml(0, 0, _, (X,0), (X,1),[],[_],0).
fml((~A), 0, _, (A,1), [], [], [],0). fml((~A), 1, _, (A,0), [], [], [],0).
fml(A, Pol, P,[A,Pol],[], [],[P],0).

%%% Path Checking

prove([(F,Pol),Pre,P],UnExp,Lits,Exp,ExpLim,PU,At,Bt,C,C1) :-
fml(F,Pol,P,F1,F2,F3,PrN,Ctr), append(_,[Lp],Pre), % look up tableau rule
( Ctr=c -> Exp<ExpLim, Exp1 is (Exp+1) ; Exp1=Exp, ! ), % control contraction
( (F2\=[],var(Lp);F2=[],\+var(Lp)) -> Pre1=Pre;append(Pre,PrN,Pre1) ),% Pre1 is new prefix
( F3=[] -> UnExp1=UnExp, At=At3;

UnExp1=[[F3,Pre1,r(P)]|UnExp], At=[P|At3] ), % update UnExp1
prove([F1,Pre1,l(P)],UnExp1,Lits,Exp1,ExpLim,PU1,At1,Bt1,C,C2), % continue with F1
( F2=[] -> PU=PU1, At3=At1, Bt=Bt1, C1=C2 ;

prove([F2,Pre1,r(P)],UnExp1,Lits,Exp1,ExpLim,PU2,At2,Bt2,C2,C1), % continue with F2
append(PU1,PU2,PU), union(At1,At2,At3), union([P|Bt1],Bt2,Bt) ).

prove([[Lit,Pl],Pr,P],_,[[[L,Pl1],Pr1,P1]|Lits],_,_,PU,At,Bt,C,C1) :- % close branch
( Lit=L, Pl is 1-Pl1, Lit=L, At=[], Bt=[], % connection found ?

(member([P,S],C) -> (S=P1 -> C1=C, PU=[]) ; % relevance condition
(member([P1,S],C) -> (S=P -> C1=C, PU=[]) ;
PU=[[Pr,_]=[Pr1,_]], C1=[[P,P1],[P1,P]|C])) ) ; % add prefixes and connection

prove([[Lit,Pl],Pr,P],[],Lits,_,_,PU,At,Bt,C,C1). % otherwise check next literal
prove(Lit,[Next|UnExp],Lits,Exp,ExpLim,PU,At,Bt,C,C1) :- % add Lit to current branch

prove(Next,UnExp,[Lit|Lits],Exp,ExpLim,PU,At,Bt,C,C1). % expand Next formula

%%% T-String Unification

t_string_unify([]).
t_string_unify([S=T|G]):- flatten(S,S1,[]), flatten(T,T1,[]), % flatten prefix lists

tunify(S1,[],T1), t_string_unify(G). % solve first equation
tunify([],[],[]). % transfor. rule R1
tunify([X1|S],[],[X2|T]) :- X1==X2, !, tunify(S,[],T). % -’’- R3
tunify([V|S],Z,[]) :- V=Z, tunify(S,[],[]). % -’’- R5
tunify([V,X|S],[],[V1|T]) :- var(V1), tunify([V1|T],[V],[X|S]). % -’’- R8
tunify([V,X|S],[Z1|Z],[V1|T]) :- var(V1), append([Z1|Z],[Vnew],V), % -’’- R9

tunify([V1|T],[Vnew],[X|S]).
tunify([V|S],Z,[X|T]) :- (S=[]; T\=[]; \+var(X)) -> % -’’- R10

append(Z,[X],Z1), tunify([V|S],Z1,T).

flatten(A,[A|B],B) :- (var(A); A\=[], A\=[_|_]), !. % flatten list
flatten([],A,A).
flatten([A|B],C,D) :- flatten(A,C,E), flatten(B,E,D).

Table 7. The source code of linTAP

prove([(F,Pol),Pre,P],UnExp,Lits,Exp,ExpLim,PU,At,Bt,C,C1) per-
forms the actual proof search. (F,Pol) is the formula currently expanded, Pre
its prefix s, P its position p. UnExp and Lits represent lists of formulas not yet
expanded and the atomic formulas on the current branch of the tableau. Exp is
the number of contractions on the current branch, ExpLim the maximum num-
ber of contractions allowed on a branch, PU a list of prefix equations, At and Bt
represent the sets αT and βT , and C represents the current set of connections C
(more precisely each connection is stored twice, i.e. C=

⋃
{p,q}εC [ [p, q], [q, p] ]).



14 Heiko Mantel Jens Otten

After a tableau has been found the prefix equations in PU have to be solved.
This is done by t_string_unify(PU) and tunify(S,[],T) where PU is a system
of string equations to be unified, S and T are two strings to be unified (see [22]).

The following goal succeeds if the formula F is valid in M?LL using not more
than ExpLim contractions on each branch:

prove([(F,0),[0],0],[],[],0,ExpLim,PU,At,Bt,[],C),

length(Bt,Nbt), length(C,Nc), Nc=:=(2*Nbt)+2, % cardinality

length(At,Nat), Nc=:=Nat+Nbt+1, % linearity

t_string_unify(PU). % unifiability of prefixes

Some experimental results. There are only a few provers and even fewer
examples available for M?LL. Table 8 contains some problems for M?LL. The
timings for these (valid) formulas are given in Table 9.2 We compare linTAP3 (with
iterative deepening) with the sequent calculus provers llprover (implemented in
Prolog; see [24]) and linseq, and with the resolution prover linres (both last-
mentioned provers are implemented in Scheme and compiled to C; see [23]).

F1 ((A
.................................................

............
.................................. ⊥)⊗A)

.................................................
............
.................................. ?(A⊥)

F2 !(A⊗ C−◦B)⊗!(B ⊗D ⊗D−◦C ⊗D)⊗A⊗ C ⊗D ⊗D−◦C ⊗D

F3 (C⊥1 ⊗ (C⊥2 ⊗ (. . . (C⊥11 ⊗ C⊥12)..)))
.................................................

............
.................................. (C12

.................................................
............
.................................. (C11

.................................................
............
.................................. . . .

.................................................
............
.................................. (C2

.................................................
............
.................................. C1)..))

F4 (C⊥1 ⊗ (C⊥2 ⊗ (. . . (C⊥11 ⊗ C⊥12)..)))
.................................................

............
.................................. ((C12 ⊗ (D12

.................................................
............
.................................. D⊥12))

.................................................
............
..................................

((C11 ⊗ (D11
.................................................

............
.................................. D⊥11))

.................................................
............
.................................. . . .

.................................................
............
.................................. ((C2 ⊗ (D2

.................................................
............
.................................. D⊥2 ))

.................................................
............
.................................. (C1 ⊗ (D1

.................................................
............
.................................. D⊥1 )))..))

F5 D⊗!(D−◦C ⊗Q)⊗!(D ⊗Q⊗Q−◦I)−◦C⊗?Q

F6 D ⊗D ⊗D⊗!(D−◦C ⊗Q)⊗!(D ⊗Q⊗Q−◦I)−◦C ⊗ I ⊗ C

F7 D ⊗D ⊗D ⊗D ⊗Q⊗Q⊗!(D−◦C ⊗Q)⊗!(D ⊗Q⊗Q−◦I)−◦C ⊗ I ⊗ C ⊗ I

F8 D ⊗D ⊗D ⊗Q⊗Q⊗Q⊗!(D−◦C ⊗Q)⊗!(D ⊗Q⊗Q−◦I)−◦C ⊗ I ⊗X

Table 8. Some problems for M?LL

Fi llprover linseq linres linTAP

F1 0.08 0.02 0.02 < 0.01
F2 61.05 0.17 0.05 0.03
F3 − 0.33 0.08 0.05
F4 − − − 0.28

Fi llprover linseq linres linTAP

F5 0.95 0.03 0.03 < 0.01
F6 − 0.15 0.05 0.13
F7 − 4.63 0.07 13.67
F8 n/a n/a n/a 11.75

Table 9. Timings for the problems from Table 8

2 Measured on a Sun SPARC10 in seconds; “–” means that no proof was found within
100 seconds. F2 is the most difficult example from [24] (linTAP solves all other prob-
lems from [24] in less than 30ms); F3 is from [23]. The predicates in F5 to F8 can be
interpreted as follows: D=”dollar”, Q=”quarter”, C=”Coke”, I=”ice-cream”. For-
mula F6, e.g., then expresses the following situation: for one dollar I can buy a Coke
and get a quarter back, and for one dollar and two quarters I can buy an ice-cream;
so if I have three dollars I can buy two Cokes and one ice-cream (see [5] for a similar
approach on deductive planning). It is possible to use (free) variables: formula F8

contains a variable X which will be bound to an appropriate predicate symbol (i.e.
I) to make the formula valid (only linTAP offers this feature).

3 The linTAP implementation uses an additional technique to simplify formulas of type
α of the form F¯ω or ω¯F replacing them by F (where ¯ ε {.................................................

............
.................................. ,⊗,−◦}).



linTAP : A Tableau Prover for Linear Logic 15

6 Conclusion

We have presented prefix-based tableau calculi for MELL and M?LL. We en-
coded the additional non-permutabilities arising in multiplicative linear logic by
an additional string unification. These calculi are the basis for our tableau prover
linTAP. linTAP is not only a very compact implementation but compares favorable
with other (larger) implementations. Due to the compact code the program can
easily be modified for special purposes or applications.

Future work include the extension to larger fragments of linear logic and the
comparison of linTAP with a connection driven proof search procedure (see [15]).

Besides the original leanTAP implementation for classical first-order logic,
lean tableau provers are also available for various non-classical logics, i.e. first-
order intuitionistic logic (ileanTAP, [21]), and the propositional modal logics K,
KD, KT, and S4 (ModLeanTAP, [4]). The linTAP implementation fills the gap
for the multiplicative linear logic. The source code of linTAP can be obtained at
http://www.intellektik.informatik.tu-darmstadt.de/~jeotten/linTAP/.

References

1. J.-M. Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic and
Computation, 2(3):297–347, 1992.

2. B. Beckert, J. Posegga. leanTAP : Lean Tableau-Based Theorem Proving. 12th Conference on
Automated Deduction, LNAI 814, pp. 793–797. Springer, 1994.

3. B. Beckert, J. Posegga. leanTAP : Lean Tableau-Based Deduction. Journal of Automated Rea-
soning, 15 (3), pp. 339–358, 1995.

4. B. Beckert, R. Goré. Free Variable Tableaux for Propositional Modal Logics. Proc. 6th

TABLEAUX Conference, LNAI 1227, pp. 91–106, Springer 1997.
5. W. Bibel. Let’s plan it deductively!. In IJCAI-97, Morgan Kaufmann, 1997.
6. I. Cervesato, J.S. Hodas, F. Pfenning. Efficient resource management for linear logic proof

search. In Extensions of Logic Programming, LNAI 1050, pages 67–81. Springer, 1996.
7. M. Fitting. First-Order Logic and Automated Theorem Proving. Springer, 1996.
8. B. Fronhöfer. The action-as-implication paradigm. CS Press, 1996.
9. D. Galmiche. Connection methods in linear logic fragments and proof nets. Technical report,

CADE–13 workshop on proof search in type-theoretic languages, 1996.
10. D. Galmiche & G. Perrier. On proof normalization in linear logic. TCS, 135:67–110, 1994.
11. V. Gehlot and C. Gunter. Normal process representatives. Sixth Annual Symposium on Logic

in Computer Science, pages 200–207, 1991.
12. J.-Y. Girard. Linear logic. TCS, 50:1–102, 1987.
13. J. Harland and D. Pym. Resource-Distribution via Boolean Constraints. 14th Conference on

Automated Deduction, LNCS 1249, pp. 222–236. Springer, 1997.
14. J.S. Hodas & D. Miller. Logic programming in a fragment of linear logic. Journal of Information

and Computation, 110(2):327–365, 1994.
15. C. Kreitz, H. Mantel, J. Otten, S. Schmitt. Connection-Based Proof Construction in Linear

Logic. 14th Conference on Automated Deduction, LNCS 1249, pp. 207–221. Springer, 1997.
16. P. Lincoln and T. Winkler. Constant-only multiplicative linear logic is NP-complete. TCS,

135:155–169, 1994.
17. H. Mantel, C. Kreitz. A Matrix Characterization for MELL. Logics in Artificial Intelligence,

JELIA ’98, LNAI 1489, pp. 169–183, Springer, 1998.
18. A. Martelli and U. Montanari. An efficient unification algorithm. ACM TOPLAS, 4:258–282,

1982.
19. M. Masseron, C. Tollu, J. Vauzeilles. Generating plans in linear logic. In Foundations of

Software Technology and Theoretical Computer Science, LNCS, Springer,1991.
20. D. Miller. FORUM: A Multiple-Conclusion Specification Logic. TCS, 165(1):201-232, 1996.
21. J. Otten. ileanTAP: An Intuitionistic Theorem Prover. Proc. 6th TABLEAUX Conference,

LNAI 1227, pp. 307–312, Springer 1997.
22. J. Otten, C. Kreitz. T-String-Unification: Unifying Prefixes in Non-Classical Proof Methods.

Proc. 5th TABLEAUX Workshop, LNAI 1071, pp. 244–260, 1996.
23. T. Tammet. Proof strategies in linear logic. JAR, 12:273–304, 1994.
24. N. Tamura. User’s Guide of a Linear Logic Theorem Prover (llprover). Technical report. Faculty

of Engineering, Kobe University, Japan, 1995.
25. L. Wallen. Automated deduction in nonclassical logic. MIT Press, 1990.


