
ileanTAP: An Intuitionistic Theorem Prover

Jens Otten?

Fachgebiet Intellektik, Fachbereich Informatik
Technische Hochschule Darmstadt

Alexanderstr. 10, 64283 Darmstadt, Germany
jeotten@informatik.th-darmstadt.de

Abstract. We present a Prolog program that implements a sound and
complete theorem prover for first-order intuitionistic logic. It is based on
free-variable semantic tableaux extended by an additional string unifica-
tion to ensure the particular restrictions in intuitionistic logic. Due to the
modular treatment of the different logical connectives the implementation
can easily be adapted to deal with other non-classical logics.

1 Introduction

Intuitionistic logic, due to its constructive nature, has an essential significance
for the derivation of verifiably correct software. Unfortunately it is much more
difficult to prove a theorem in intuitionistic logic than finding a classical proof for
it. Whereas there are many classical provers there exists only very few (published)
implementations of theorem provers for first-order intuitionistic logic (e.g. [8, 9]).

The following implementation was inspired by the classical prover leanTAP
[1, 2]. leanTAP is based on free-variable tableaux [4], works for formulae in non-
clausal form and reach its considerable performance by a very compact repre-
sentation and an optimized Skolemization. To extend leanTAP to deal with in-
tuitionistic logic one possibility is to add (or modify) the clauses implementing
the corresponding tableau rules appropriately. This would of course not lead to
a very efficient implementation, since the non-permutabilities between certain
intuitionistic rules cause a large search space. A lot of additional strategies have
to be added in this case (as done in [8]).

The following approach solves this problem in a more sophisticated way. In
classical provers usually term unification and Skolemization is used to express the
non-permutabilities between the quantifier rules (due to the “eigenvariable condi-
tion” in the sequent calculus). To handle the non-permutabilities between certain
intuitionistic rules in a similar way we use a specialed string unification and ex-
tend the Skolemization accordingly. The basis of this approach was invented by
Wallen who developed a matrix characterization for some non-classical logics [10].

In the following implementation we first use a leanTAP like technique for
path checking to prove the classical validity of a given formula. Afterwards we
try to unify the so-called prefixes of those atoms closing the branches of the
tableau proof found in the first step. If this additional string unification succeeds
the formula is intuitionistically valid. We present some performance results and
show how to modify the code to deal with other non-classical logics.

The source code of ileanTAP can be obtained free of charge from the author.2

? The author is supported by the Adolf Messer Stiftung
2 Or via web http://aida.intellektik.informatik.th-darmstadt.de/∼jeotten/ileantap/

2 The Program

We assume the reader to be familiar with free-variable tableaux [4] and the
leanTAP code (see [1, 2]) as well as with some details of Wallen’s approach (see
[10] or [7, 5]). The following Prolog implementation is of course not as lean and
compact as the original code of leanTAP . The logical connectives and quantifiers
of intuitionistic logic need a separate treatment and we can not make use of any
negation normal form.3 We divide the description of the implementation into the
parts “path checking” and “T-string unification”. Whenever possible we will use
the notation of leanTAP .4 For the syntax of formulae we use the logical connectives
“~” (negation), “,” (conjunction), “;” (disjunction), “=>” (implication), “<=>”
(equivalence), the quantifiers all X:F (universal) and ex X:F (existential), and
Prolog terms for atomic formulae. For example to express the formula ∀x∃y(¬q∧
p(y) ⇒ p(x)) we use the Prolog term all X:ex Y:(~q,p(Y)=>p(X)).

2.1 Path Checking

The technique of path checking is similar to the one used in leanTAP . In order
to get a compact code and to allow an easy adaptation to other logics (see
conclusion) we decided to use two predicates instead of one: prove and fml.

The predicate fml is used to specify the particular characteristics of each
logical connective or quantifier:

fml(F,Pol,Pre1,FreeV,S,F1,F2,FUnE,FUnE1,FrV,PrV,Lim1,Lim2,V,PrN,Cp,Cp1)

succeeds if F is a first-order formula but not atomic. The parameter Pol is its
polarity (either 0 or 1), Pre1 its prefix, FreeV a list of its “free” quantifier- and
prefix-variables and S its unique position in the formula tree. The parameters FrV
and PrV are lists of free quantifier-variables and prefix-variables of the current
branch, respectively.

The parameters F1, F2, FUnE and FUnE1 are of the form (Formula,Polarity)
and are bound to Prolog terms as follows: F1 is the first (or only) subformula of F
(possibly later bound to a copy of the subformula), F2 is the second subformula
of F if F is a β-formula (otherwise []), FUnE is the second subformula of F if F is
an α-formula (otherwise []), FUnE1 is bound to the formula F (and its polarity)
itself if F is a γ-formula. If F is a γ-formula Lim1 is bound to FrV and V to the
variable (strictly speaking to a copy of it later on) which is quantified in F. If
the position of F belongs to a prefix-variable Lim2 is bound to PrV. If necessary
PrN will be bound to a new prefix-character of F. The parameter Cp contains
a term which has to be copied later on and bound to the parameter Cp1. The
following 13 clauses define the corresponding characteristics of the intuitionistic
connectives and quantifiers:

fml((A,B), 1, _,_,_,(A,1),[],(B,1),[], _,_, [],[],[],[], [],[]).
fml((A,B), 0, _,_,_,(A,0),(B,0),[],[], _,_, [],[],[],[], [],[]).
fml((A;B), 1, _,_,_,(A,1),(B,1),[],[], _,_, [],[],[],[], [],[]).
fml((A;B), 0, _,_,_,(A,0),[],(B,0),[], _,_, [],[],[],[], [],[]).
fml((A<=>B),Pl,_,_,_,(((A=>B),(B=>A)),Pl),[],[],[],_,_,[],[],[],[],[],[]).
fml((A=>B), 1,_,_,_, (C,0),(D,1),[],((A=>B),1),_,PrV,[],PrV,[],_,A:B,C:D).
fml((A=>B), 0,_,FV,S,(B,0),[],(A,1),[], _,_, [],[],[],S^FV,[],[]).

3 In intuitionistic logic we have, e.g., ¬¬A 6≡ A and A ⇒ B 6≡ ¬A ∨B.
4 But notice that we prove a formula and do not refute its negation.

fml((~A), 1,_,_,_, (C,0),[],[],((~A),1), _,PrV,[],PrV,[],_, A,C).
fml((~A), 0,_,FV,S,(A,1),[],[],[], _,_, [],[],[],S^FV,[],[]).
fml(all X:A,1,_,_,_, (C,1),[],[],(all X:A,1),FrV,PrV,FrV,PrV,Y,_,X:A,Y:C).
fml(all X:A,0,Pr,FV,S,(C,0),[],[],[],_,_,[],[],[],S^FV,(X,A),(S^[]^Pr,C)).
fml(ex X:A, 1,Pr,FV,S,(C,1),[],[],[],_,_,[],[],[],[], (X,A),(S^FV^Pr,C)).
fml(ex X:A, 0,_,_,_, (C,0),[],[],(ex X:A,0), FrV,_, FrV,[],Y,[],X:A,Y:C).

We use a similar technique for Skolemization as leanTAP . That is we replace
the quantified variable by the Skolem-term S^FV^Pr in the current formula F
where S is the position of F (in the formula tree), FV its free quantifier- and
prefix-variables and Pr its prefix (which we need later on). The prefix-constants
have a similar format, namely S^FV.5

The predicate actually performing the proof search is

prove([(F,Pol),Pre,FreeV,S],UnExp,Lits,FrV,PrV,VarLim,[PU,AC])

It succeeds if there is a (classical) closed tableau for F. The parameters UnExp
and Lits represent lists of formulae not yet expanded and the atomic formulae on
the current branch, respectively. The parameter VarLim is a positive integer used
to initiate backtracking (in order to obtain completeness within Prolog’s depth-
first search). In case of success, PU is bound to the prefixes of the atomic formulae
which have closed the tableau, i.e. it contains pairs of prefixes Pre1=Pre2. The
parameter AC is bound to a list containing the free variables (which might be
bound to Prolog terms) of the proven formula and the corresponding prefixes,
i.e. it contains pairs of [Variable,Prefix]. The other parameters have been
explained before.

prove([(F,Pol),Pre,FreeV,S],UnExp,Lits,FrV,PrV,VarLim,[PU,AC]) :-
fml(F,Pol,Pre1,FreeV,S,F1,F2,FUnE,FUnE1,FrV,PrV,Lim1,Lim2,V,PrN,Cp,Cp1),
!, \+length(Lim1,VarLim), \+length(Lim2,VarLim),
copy_term((Cp,FreeV),(Cp1,FreeV)), append(Pre,[PrN],Pre1),
(FUnE =[] -> UnEx2=UnExp ; UnEx2=[[FUnE,Pre1,FreeV,r(S)]|UnExp]),
(FUnE1=[] -> UnExp1=UnEx2 ; append(UnEx2,[[FUnE1,Pre,FreeV,S]],UnExp1)),
(var(V) -> FV2=[V|FreeV], FrV1=[V|FrV], AC2=[[V,Pre1]|AC1] ;

FV2=FreeV, FrV1=FrV, AC2=AC1),
(var(PrN) -> FreeV1=[PrN|FV2], PrV1=[PrN|PrV] ; FreeV1=FV2, PrV1=PrV),
prove([F1,Pre1,FreeV1,l(S)],UnExp1,Lits,FrV1,PrV1,VarLim,[PU1,AC1]),
(F2=[] -> PU=PU1, AC=AC2 ;
prove([F2,Pre1,FreeV1,r(S)],UnExp1,Lits,FrV1,PrV1,VarLim,[PU2,AC3]),
append(PU1,PU2,PU), append(AC2,AC3,AC)).

It depends on the actual formula F which steps are performed to expand F.
After checking whether the depth-bound VarLim is reached, we make a copy of
the specified Prolog term.6 This is used to make a copy of those formulae which
have to be kept among the unexpanded formulae or to insert a Skolem-term into
a formula (in each case the free variables FreeV are not renamed). The current
prefix is extended and the list of formulae not yet expanded is extended accord-
ingly. We also have to add the quantifier- or prefix-variable to the corresponding
lists, before expanding the subformulae.

5 This “liberalized” Skolemization is in fact correct and complete. Just consider this
Skolemization as an technique to check if the reduction ordering is acyclic and consider
appropriate copies of the corresponding subformulae.

6 Lim1/Lim2 are used to restrict the first-order/intuitionistic multiplicity .

prove([(Lit,Pol),Pre|_],_,[[(L,P),Pr|_]|Lits],_,_,_,[PU,AC]) :-
(Lit=L, Pol is 1-P, (Pol=1 -> PU=[Pre=Pr] ; PU=[Pr=Pre]), AC=[]) ;
prove([(Lit,Pol),Pre|_],[],Lits,_,_,_,[PU,AC]).

prove(Lit,[Next|UnExp],Lits,FrV,PrV,VarLim,PU_AC) :-
prove(Next,UnExp,[Lit|Lits],FrV,PrV,VarLim,PU_AC).

The last two clauses remain almost unchanged from leanTAP . The first clause
closes the current branch if the two atomic formulae Lit and L (with different
polarity) can be unified.7 The list PU of prefixes to be unified is extended ac-
cordingly. The last clause adds Lit to the list of atomic formulae on the current
branch and selects another formula from those not yet expanded.

2.2 T-String Unification

After finding a closed tableau we have to unify the prefixes of those atomic
formulae which have closed the tableau. These prefixes are stored in the list PU.
A prefix of an atomic formula is a string and essentially describes the position of
this formula in the formula tree (see [10]). Furthermore an additional condition
on all (universal) variables has to be checked.8 These variables are stored in the
list AC.

The predicate t_string_unify(PU,AC) succeeds if all prefixes in PU can be
unified and the additional condition for all variables in AC holds. In this case an
intuitionistic proof can be obtained from the (classical) proof found in the first
step. Otherwise we have to look for an other (classical) proof.

The two prefixes S and T are unified using the predicate tunify(S,[],T).9 A
description of this predicate together with all the theoretical details are explicitly
explained in [6].

t_string_unify([],AC) :- addco(AC,[],final).
t_string_unify([S=T|G],AC) :- flatten([S,_],S1,[]), flatten(T,T1,[]),

tunify(S1,[],T1), addco(AC,[],t),
t_string_unify(G,AC).

tunify([],[],[]).
tunify([],[],[X|T]) :- tunify([X|T],[],[]).
tunify([X1|S],[],[X2|T]) :- (var(X1) -> (var(X2), X1==X2);

(\+var(X2), X1=X2)), !, tunify(S,[],T).
tunify([C|S],[],[V|T]) :- \+var(C), !, var(V), tunify([V|T],[],[C|S]).
tunify([V|S],Z,[]) :- V=Z, tunify(S,[],[]).
tunify([V|S],[],[C1|T]) :- \+var(C1), V=[], tunify(S,[],[C1|T]).
tunify([V|S],Z,[C1,C2|T]) :- \+var(C1), \+var(C2), append(Z,[C1],V),

tunify(S,[],[C2|T]).
tunify([V,X|S],[],[V1|T]) :- var(V1), tunify([V1|T],[V],[X|S]).
tunify([V,X|S],[Z1|Z],[V1|T]) :- var(V1), append([Z1|Z],[Vnew],V),

tunify([V1|T],[Vnew],[X|S]).
tunify([V|S],Z,[X|T]) :- (S=[]; T\=[]; \+var(X)) ->

append(Z,[X],Z1), tunify([V|S],Z1,T).

7 Note that for this purpose we have to use sound unification (i.e. with occurs check).
8 Let σQ and σJ be the term-/prefix-substitution. For all free variables u and

all Skolemized variables v occurring in σQ(u) the condition |σJ(prefix(u))| ≥
|σJ(prefix(v))| must hold.

9 The variables representing the prefixes may be instantiated with nested lists. There-
fore the predicate flatten is necessary which can be implemented as follows:
flatten(A,[A|B],B) :- (var(A); A= ^), !. flatten([],A,A).
flatten([A|B],C,D) :- flatten(A,C,E), flatten(B,E,D).

The predicate addco is used to check the interaction condition between the
term- and prefix-substitution mentioned above.

addco(X,_,_) :- (var(X); X=[[]]), !.
addco([[X,Pre]|L],[],Ki) :- !, addco(X,Pre,Ki), addco(L,[],Ki).
addco(_^_^Pre1,Pre,Ki) :- !, (Ki=final -> flatten(Pre1,S,[]),

flatten(Pre,T,[]), append(S,_,T) ;
\+ \+ t_string_unify([Pre1=Pre],[])).

addco(T,Pre,Ki) :- T=..[_,T1|T2],!, addco(T1,Pre,Ki), addco(T2,Pre,Ki).
addco(_,_,_).

The following goal succeeds if F can be proven intuitionistically without using
more than VarLim (quantifier- and prefix-) variables on each branch:

prove([(F,0),[],[],l],[],[],[],[],VarLim,[PU,AC]), t_string_unify(PU,AC).

3 Performance

Although the presented implementation is comparably short its performance
seems to be quite good. We will show some experimental results comparing
ileanTAP with the tableau prover ft [8]. We also provide the timing of leanTAP
to point out the correlation between leanTAP and ileanTAP. All three provers
perform an iterative deepening. The following problems are taken from [8] and
measured on a Sun SPARC10 (times are given in seconds; “–” means that no
proof was found within 150 seconds).

No. ft ilean lean
TAP TAP

1.1 0.03 0.07 0.02
1.2 0.56 0.12 0.05
1.3 – 0.35 0.08
1.4 0.01 0.05 < 0.01
1.5 1.81 0.13 0.02
1.6 18.67 0.20 0.07
1.7 0.16 0.03 0.02
1.8 – 0.13 0.08
2.1 1.73 – –
2.2 3.61 – –
2.3 6.08 – –
3.1 < 0.01 0.02 < 0.01
3.2 0.07 1.72 < 0.01

No. ft ilean lean
TAP TAP

3.3 0.01 0.05 0.02
3.4 < 0.01 0.17 0.02
3.5 2.66 – 0.65
4.1 10.53 – 2.40
4.2 11.78 – 4.30
5.1 < 0.01 0.08 < 0.01
5.2 0.03 3.17 0.30
5.3 0.76 121.98 8.05
6.1 < 0.01 < 0.01 < 0.01
6.2 0.01 0.48 0.60
6.3 0.01 0.10 < 0.01
6.4 < 0.01 0.08 0.02
6.5 < 0.01 0.15 < 0.01

No. ft ilean lean
TAP TAP

6.6 < 0.01 0.02 < 0.01
6.7 < 0.01 0.02 < 0.01
6.8 0.01 0.02 0.02
6.9 0.01 0.03 0.03
6.10 < 0.01 0.10 0.03
6.11 < 0.01 0.03 < 0.01
6.12 0.04 – 0.02
6.13 0.07 4.26 0.07
6.14 0.01 0.10 0.03
6.15 0.04 – 0.15
7.1 < 0.01 0.02 < 0.01
7.2 0.05 0.48 < 0.01
7.3 3.98 32.85 0.03

Table 1. Performance of ileanTAP with eclipse Prolog Version 3.5.2

ileanTAP yields very good results on the problems of group 1 (“alternations of
quantifiers”), 3 (“Pelletier’s problems 39–43”) and 6 (“simple”). It has a similar
performance on the problems of group 5 (“unify”) and 7 (“problematic”), but
behaves very poorly on problems of group 2 (“append”) and 4 (“existence”). The
problems of group 2 are even too hard for the classical prover leanTAP .

Altogether, a remarkable result keeping in mind that ft consists of about 200
kbytes C-source code (whereas ileanTAP has a size of about 4 kbytes).10

10 The prover in [9] is a bit slower than ft on the simpler problems. It cannot solve
problem no. 5.3 but prove all other problems in less than one second.

4 Conclusion

We presented a Prolog implementation for a first-order intuitionistic theorem
prover. We encode the additional non-permutabilities arising in intuitionistic logic
in a sophisticated way namely by an additional string unification which yields
a quite good performance. Due to the compact code the program can easily be
modified for special purposes or applications.

Since the particular characteristics of the logical connectives and quantifiers
are specified in a separate way, it is easy to adapt the prover to other non-classical
logics. Replacing the last 8 clauses of the predicate fml by the following clauses
fml((A=>B), 1,_,_,_, (A,0),(B,1),[],[], _,_, [],[],[],[], [],[]).
fml((A=>B), 0,_,_,_, (B,0),[],(A,1),[], _,_, [],[],[],[], [],[]).
fml((~A), 1,_,_,_, (A,0),[], [],[], _,_, [],[],[],[], [],[]).
fml((~A), 0,_,_,_, (A,1),[], [],[], _,_, [],[],[],[], [],[]).
fml(all X:A,1,_,_,_, (C,1),[],[],(all X:A,1),FrV,_, FrV,[],Y,[],X:A,Y:C).
fml(all X:A,0,Pr,FV,S,(C,0),[],[],[],_,_, [],[],[],[],(X,A),(S^FV^Pr,C)).
fml(ex X:A, 1,Pr,FV,S,(C,1),[],[],[],_,_, [],[],[],[],(X,A),(S^FV^Pr,C)).
fml(ex X:A, 0,_,_,_, (C,0),[],[],(ex X:A,0), FrV,_, FrV,[],Y,[],X:A,Y:C).

and adding the following 4 clauses
fml([](A), 1,_,_,_, (C,1),[],[],([](A),1),_,PrV,[], PrV,[],_, A,C).
fml([](A), 0,_,FV,S,(A,0),[],[],[], _,_, [], [], [],S^FV, [],[]).
fml(<>(A), 1,_,FV,S,(A,1),[],[],[], _,_, [], [], [],S^FV, [],[]).
fml(<>(A), 0,_,_,_, (C,0),[],[],(<>(A),0),_,PrV,[], PrV,[],_, A,C).

immediately yields a program implementing a theorem prover for the first-order
modal logic S4 (where “[]” and “<>” represent the corresponding modal opera-
tors). Modifying the algorithm for T-string unification accordingly leads also to
provers for the modal logics D, D4, S5, and T (see [6, 7] for details).

Of course, there is still room for further research. The current implementation
is not a decision procedure for the propositional intuitionistic logic (which is
decidable), since we need multiplicities already in this fragment. For example
it would be interesting to integrate some techniques from [3] to get a decision
procedure for the propositional fragment of intuitionistic logic.

References
1. B. Beckert and J. Posegga. leanTAP : Lean Tableau-Based Theorem Proving.

Proc. CADE-12, LNAI 814, pp. 793–797, Springer Verlag, 1994.
2. B. Beckert and J. Posegga. leanTAP : Lean Tableau-based Deduction. Journal

of Automated Reasoning, 15(3):339–358, 1995.
3. R. Dyckhoff. Contraction-free Sequent Calculi for Intuitionistic Logic. Journal

of Symbolic Logic, 57(3):795–807, 1992.
4. M. C. Fitting. First-Order Logic and Automated Theorem Proving. Springer

Verlag, 1990.
5. J. Otten, C. Kreitz. A Connection-Based Proof Method for Intuitionistic Logic.

Proc. 4th TABLEAUX Workshop, LNAI 918, pp. 122–137, 1995.
6. J. Otten, C. Kreitz. T-String-Unification: Unifying Prefixes in Non-Classical

Proof Methods. Proc. 5th TABLEAUX Workshop, LNAI 1071, pp. 244–260, 1996.
7. J. Otten, C. Kreitz. A Uniform Proof Procedure for Classical and Non-Classical

Logics. KI-96: Advances in Artificial Intelligence, LNAI, Springer Verlag, 1996.
8. D. Sahlin, T. Franzen, S. Haridi. An Intuitionistic Predicate Logic Theorem

Prover. Journal of Logic and Computation, 2(5):619–656, 1992.
9. T. Tammet. A Resolution Theorem Prover for Intuitionistic Logic. Proc. CADE-

13, LNAI, Springer Verlag, 1996.
10. L. Wallen. Automated deduction in nonclassical logic. MIT Press, 1990.

